
Analysis of RMAC

Lars R. Knudsen
DTU, Denmark

November 10, 2002

Abstract

In this paper the newly proposed RMAC system is analysed and a
generic attack is presented. The attack can be used to find one of the
two keys in the system faster than by an exhaustive search. Also, a
serious attack on RMAC used with triple-DES is presented.

1 Introduction

RMAC [1] is an authentication system based on a block cipher. The
block cipher algorithms currently approved to be used in RMAC are
the AES and triple-DES.

RMAC is based on a block cipher with b-bit blocks and k-bit keys.
RMAC takes as inputs: a message M of an arbitrary number of bits,
two keys K1,K2 each of k bits and a salt R of r bits, where r ≤ k. It
produces an m-bit MAC value, where m ≤ b. The method is as follows.
Encrypt M using the block cipher in CBC mode using the key K1. The
last ciphertext block is then encrypted with the key K3 = K2+R where
’+’ is addition modulo 2. The resulting ciphertext is then truncated
to m bits to form the MAC. The two keys K1,K2 may be generated
from one k-bit key in a standard way [1].

There are five parameter sets in [1] for each of two block sizes.

Parameter Set b = 128 b = 64
(r,m) (r,m)

I (0, 32) (0, 32)
II (0, 64) (64, 64)
III (16, 80) n/a
IV (64, 96) n/a
V (128, 128) n/a

In Appendix A of [1] it is noted that for RMAC with two indepen-
dent keys K1 and K2 an exhaustive search for the keys is expected

1



to require the generation of 22k−1 MACs, where k is the size of one
key. For RMAC with parameter sets II and V, however, this can be
done much faster under a chosen message attack with just one known
message and one chosen message. Independently of how the two keys
are generated, an exhaustive search for the key K2 requires only an
expected number of 2k decryptions of the block cipher [2]. Given a
message M and the MAC using the salt R, request the MAC of M
again. With a high probability this MAC is computed with a salt R′,
such that R′ 6= R. For these two MACs, the values just before the final
encryption will be equal and K2 can be found after about 2k decryp-
tion operations. Subsequently, K1 can be found in roughly the same
time.

The rest of this paper is organised as follows. In §2 an attack on
RMAC used with three-key triple-DES is presented. The attack finds
all three DES keys in time roughly that of three times an exhaustive
search for a DES key using only a few MACs. §3 presents an attack
on RMAC used with any block cipher. The attack finds one of the two
keys in the system faster than by an exhaustive search.

2 Attack on RMAC with three-key triple
DES

One of the block cipher algorithms approved to be used in RMAC is
triple-DES with 168-bit keys. Consider RMAC with parameter set
II, that is with 64-bit MACs and a 64-bit salt. The key for the final
encryption is then K3 = K2 + (R | 0104). However, it is not specified
in [1] how the three DES keys are derived from K3. Assume that the
first DES key is taken as the rightmost 56 bits of K2 + (R | 0104), the
second DES as the middle 56 bits, and the third DES as the leftmost
56 bits. Assume an attacker is given two MACs of the same message M
but using two different values, R and R′ of the salt. Assume that the
rightmost eight bits of both R and R′ are zeros. Then the encryption of
the last same block for the two MACs is done using triple-DES where
for one MAC the key used is (a, b, c), and where for the other MAC
the key used is (a, b, c⊕d). Since the attacker knows d, he can decrypt
through a single DES operation, find c in 256 operations and derive
one of the three DES keys. This attack has a probability of success of
2−16. After the third DES key has been found, it is possible to find
the second DES key with similar complexity. Note that eight bits of
the salt affect the second DES key. Request the MAC of a message M
using two different values of the salt. Decrypt through the final DES
component with the third DES key. With a high probability the two
second DES keys in the final encryption will be different as a result
of different salt values. Since the salts are known by the attacker,

2



one finds the second DES in about 256 operations. Subsequently, the
final DES key can be found in about 256 operations and the scheme is
broken.

3 A generic attack

In this section we present an attack on the RMAC system with param-
eter set II for b = 64 and RMAC with parameter set V for b = 128.
The attack finds the value of K2 after which RMAC reduces to a sim-
ple CBC-MAC for which it is well-known that simple forgeries can be
found. In the following, let dK(x) denote the decryption of x using the
key K for the underlying block cipher.

The attack is based on multiple collisions.

Definition 1 A t-collision for a MAC is a set of t messages all pro-
ducing the same MAC value.

We shall make use of the following lemma which is easily proved.

Lemma 1 Let A, B, and C be boolean variables. Then

A ⇒ B ⇔ not(B) ⇒ not(A),

and

A ⇒ (B AND C) ⇔ not(B) OR not(C) ⇒ not(A).

Let D be some message (with an arbitrary no. of blocks). Then
the MAC of D, MACK1,K2(D,R), is the last block from the CBC-
encryption using K1, encrypted once again using the key K2 + R,
where R is the salt. The attack goes as follows. Request the MACs of
D for s different values of the salt R. Assume that the attacker finds
a t-collision, where the salts are R0, . . . , Rt−1 and denote the common
MAC value by M ′. For simplicity denote K2+R0 by K, and K2+Ri

by K + ai−1 for i = 1, . . . , t − 1. The attacker guesses a key value L
and computes the decryptions of the MAC value M ′ using the keys
L,L + a0, . . . , L + at−1. Then it holds for i = 0, . . . , t − 1, that if
L = K or L = K + ai then dL(M ′) = dL+ai(M

′). Using Lemma 1
one gets that if dL(M ′) 6= dL+ai(M

′) then L 6= K and L 6= K + ai for
0 ≤ i < t. Similarly, if dL+ai(M

′) 6= dL+aj (M
′) then L 6= K + ai + aj

for 0 ≤ i 6= j < t. In this way an exhaustive search for K2 can be
made faster than brute-force.

In some rare cases one gets equal values in the inequality tests. As
an example, if dL(M ′) = dL+ai(M

′) for some i, then one needs to check
if dL(M ′) = dL+a0(M

′) = dL+a1(M
′) = ... after which all false alarms

3



are expected to be detected. The expected number of false alarms is

t +
(

t− 1
2

)
.

Let us show the case of a 3-collision in more details. Assume that
the random numbers, the salts used, are R0, R1, and R2 (which are
known to the attacker). Since the messages are the same for all MACs
and since the MACs are equal, say M ′, one knows that the keys K2 +
R0,K2 + R1, and K2 + R2 all decrypt M ′ to the same (unknown)
message z, thus

dK(M ′) = dK+a0(M
′) = dK+a1(M

′),

where K = K2 + R0, a0 = R0 + R1 and a1 = R0 + R2.
The following implications are immediate.

L = K ⇒ dL(M ′) = dL+a0(M
′) AND

dL+a0(M
′) = dL+a1(M

′)

L = K + a0 ⇒ dL+a0(M
′) = dL(M ′) AND

dL(M ′) = dL+a0+a1(M
′)

L = K + a1 ⇒ dL+a1(M
′) = dL+a0+a1(M

′) AND
dL+a1(M

′) = dL(M ′)

L = K + a0 + a1 ⇒ dL+a0+a1(M
′) = dL+a1(M

′) AND
dL+a1(M

′) = dL+a0(M
′)

Lemma 1 enables us to rewrite the above implications as follows.

dL(M ′) 6= dL+a0(M
′) ⇒ L 6= K

dL+a0(M
′) 6= dL(M ′) ⇒ L 6= K + a0

dL+a1(M
′) 6= dL(M ′) ⇒ L 6= K + a1

dL+a1(M
′) 6= dL+a0(M

′) ⇒ L 6= K + a0 + a1

Take (guess) a key value, L and compute dL(M ′), dL+a0(M
′), and

dL+a1(M
′). If dL(M ′) 6= dL+a0(M

′), then L 6= K and L 6= K + a0,
if dL+a0(M

′) 6= dL+a1(M
′), then L 6= K + a0 + a1, and if dL(M ′) 6=

dL+a1(M
′), then L 6= K + a1.

Summing up, with a 3-collision (provided a0, a1 are different) one
can check the values of four keys from three decryption operations.

Let us next assume that there is a 4-collision. Let the four keys in
the 4-collision be K,K + a0,K + a1, K + a2. Then from the results
of dL(M ′), dL+a0(M

′), dL+a1(M
′), and dL+a2(M

′), one can check the
validity of four keys. Moreover, by arguments similar to the case of a
3-collision, from the four decryptions, one can check the values of all
keys of the form K + ai + aj , where 0 ≤ i 6= j ≤ 2. Thus from four

decryption operations one can check 4 +
(

3
2

)
= 7 keys.

4



Table 1:

t u = t +

(
t− 1

2

)
u/t

3 4 1.3
4 7 1.8
5 11 2.2
6 16 2.7
7 22 3.1
8 29 3.6
9 37 4.1
10 46 4.6
17 136 8.0

This generalises to the following result. With a t-collision one can

check the values of u = t+
(

t− 1
2

)
keys from t decryption operations.

Table 1 lists values of t, u and u/t. It should be clear that t-collisions
can be used to reduce a search for the key K2, one question is by how
much. How many values of L need to be tested before the sets of keys
{L,L + a0, . . . , L + at−1, L + a0 + a1, . . . , L + at−2 + at−1} cover the
entire key space?

Consider the case t = 3. One can assume a0 6= a1 (otherwise there
is no collision), and that with a high probability there are two bit
positions where a0 6= a1. Without loss of generality assume that these
are the two most significant bits and that these bits are “01” for a0

and “10” for a1. Then a strategy is the following: Let L run through
all keys where the most significant two bits are “00”. Then clearly the
sets

{L,L + a0, L + a1, L + a0 + a1}
cover the entire key space and an exhaustive search for K2 is reduced
by a factor of 4

3 , since in the attack one can check the value of four
keys at the cost of three decryptions.

Consider the case t = 4. With a high probability the b-bit vectors
a0, a1, and a2 are pairwise different. Also, with a high probability there
are three bit positions where a0, a1, and a2 are linearly independent
(viewed as three-bit vectors). Without loss of generality assume that
the bits are the three most significant bits and that these are “001”
for a0, “010” for a1 and “100” for a2. Then a strategy is the following:
Let L run through all keys where the most significant three bits are
“000”. Then clearly the sets

{L,L + a0, L + a1, L + a2, L + a0 + a1, L + a0 + a2, L + a1 + a2}

5



cover 7/8 of the key space. Next fix the most significant three bits of L
to “111”, find other bit positions where a0, a1, and a2 are different and
repeat the strategy. Thus, in the first phase of the attack one chooses
2b−3 values of L, does 4× 2b−3 = 2b−1 encryptions, and one can check
7× 2b−3 keys. In the next phase of the attack one chooses 2b−6 values
of L, does 4 × 2b−6 = 2b−4 encryptions, and one can check 7 × 2b−6

keys. At this point, a total of 7× 2b−3 + 7× 2b−6 = 2b − 2b−3 − 2b−6

keys have been checked at the cost of about 2b−1 + 2b−4 encryptions.
In total, an exhaustive search for K2 is reduced by a factor of almost
two.

For higher values of t the attacker’s strategy becomes more complex.
We claim that with a high probability (“good” values of ai) the factor
saved in an exhaustive search for the key is close to the value of u/t
(see Table 1).

The following result shows the complexity of finding t-collisions [3].

Lemma 2 Consider a set of s randomly chosen b-bit values. With
s = c2(t−1)b/t one expects to get one t-collision, where c ≈ (t!)1/t.

If it is assumed for a fixed message D and a (randomly chosen) salt
R that the resulting MAC is a random m-bit value, one can apply the
Lemma to estimate the number of texts needed to find a t-collision.

Consider a few examples. With s = 2(b+1)/2 one expects to get one
pair of colliding MACs, that is, one (2-)collision. With s = (1.8)22b/3

one expects to get a 3-collision, that is, three MACs with equal values
(61/3 ≈ 1.8). With s = (2.2)23b/4 one expects to get one 4-collision
(241/4 ≈ 2.2).

From Stirling’s formula n! =
√

2πn(n/e)n(1 + Θ( 1
n )), one gets that

(t!)1/t ≈ t/e for large t. Thus, with s = (t/e)2(t−1)b/t one expects to
get a t-collision. Table 2 lists the complexities of finding t-collisions
depending on the block size b.

There are many variants of this attack depending on how many
chosen texts the attacker has access to. Table 3 lists the complexities
of some instantiations of the attacks, where for triple-DES the number
of chosen texts has been chosen to be less than 264 (since the salt can
be a maximum of 64 bits) and for AES the time complexity and the
number of chosen texts needed have been made comparable. In both
cases an exhaustive search for the key has been reduced by a factor of
eight, so the correct value of the key can be expected trying half of that
number of values. As a final remark, note that the message D in the
attack need not be chosen nor known by the attacker. Therefore one
can argue that this attack is stronger than a traditional “chosen-text”
attack.

6



Table 2: The estimated number of texts needed to find a t-collision.
t #texts needed

b = 64 b = 128
3 244 286

4 249 297

5 253 2104

6 255 2108

7 257 2112

8 258 2114

9 259 2116

10 260 2118

17 263 2123

Table 3: Expected running times and chosen texts of attacks finding K2 of
RMAC.

Algorithm k b Parameter t Expected # chosen
sets running time texts

3-DES 112 64 II 12 2108 263

AES 128 128 V 20 2124 2123

References

[1] NIST. DRAFT Recommendation for Block Cipher Modes of Op-
eration: the RMAC Authentication Mode. NIST Special Publi-
cation 800-38B. October 18, 2002.

[2] Chris Mitchell. Private communication.

[3] R. Rivest and A. Shamir. Payword and Micromint: Two simple
micropayment schemes. Cryptobytes, 2(1):7–11, 1996.

7


